

School District of Marshfield Course

Syllabus

Course Name: Game Programming H
Length of Course: Semester
Credit: 1/2 Credit

Program Goal:

Empower learners to be college and career ready through standards-based experiences in the

classroom and career-based learning experiences with business and industry partners. Design

and implement educational experiences for creating a skilled, knowledgeable, and productive

workforce. Learners will engage in competencies that enable them to stay up-to-date with

evolving skills as they pursue careers directly out of high school, as technical school degree

earners, or as university graduates. Our goal is to develop critical thinkers and collaborative

problem solvers, providing connections to the issues and challenges facing our local, regional,

and global economies.

Course Description:

What does it take to be a game developer? This course provides students with an understanding

of the principles and concepts of video game development, animation, and app development

processes. Students will learn game design theory, animation techniques, and app development

processes using state-of-the-art integrated development environments. Students design and

develop games, analyze popular games, and learn about various aspects of the game industry.

This is a project-based course providing students with several hands-on experiences, providing

insight as to what it takes to be a game programmer in today’s world.

Standards: Wisconsin Standards for Computer Science (CS)
Algorithms and Programming
AP1: Students will recognize and define computational problems using algorithms and programming.
Develop algorithms.
AP1.a

1.a.8.h: Analyze a problem, and then design and
implement an algorithmic solution using sequence,
selection and iteration.
1.a.11.h: (+) Decompose a large-scale computational
problem by identifying generalizable patterns and
applying them in a solution.

AP2: Students will create computational artifacts using algorithms and programming.
Develop and implement an artifact.
AP2.a

2.a.12.h: Design, develop, and implement a computing
artifact that responds to an event (e.g., robot that
responds to a sensor, mobile app that responds to a text
message, sprite that responds to a broadcast).

AP4: Students will develop and use abstractions.
Create and use abstractions
(representations) to solve complex
computational problems.
AP4.a

4.a.12.h: (+) Identify programming language features that
can be used to define or specify an abstraction.
4.a.13.h: (+) Identify abstractions used in a solution
(program or software artifact) and reuse those abstractions
to solve a different problem.

AP5: Students will collaborate with diverse teams.
Work together to solve computational
problems using a variety of resources.
AP5.a

5.a.9.h: (+) Use version control systems, Integrated
Development Environments (IDEs), and collaboration
tools and practices (code documentation) in a group
software project.

Impacts of Computing
IC1: Students will understand the impact and effect computing technology has on our everyday lives.
Understand the impact technology has
on our everyday lives, and the effects of
computing on the economy and culture.
IC1.a

1.a.6.h: Debate the social and economic implications
associated with ethical and unethical computing practices
(e.g., intellectual property rights, hacktivism, software
piracy, new computers shipped with malware).
1.a.9.h: Describe how computation shares features with
art and music by translating human intention into an
artifact.

IC2: Students will experience learning within a collaborative, inclusive computing culture and explain
the steps needed to ensure that all people have access to computing.
Test and refine digital artifacts for
accessibility.
IC2.b

2.b.3.h: Design a user interface (e.g., web pages, mobile
applications, animations) to be more inclusive,
accessible, minimizing the impact of the designer's
inherent bias.

Key Vocabulary:
abstract accessibility animatic Asymmetric
avatar beta blind testing commercial viability
copyright creativity cut scene development
design game design gameplay graphics
immersion incremental intellectual property iterative
levels level design action game noob
patent play balance pitch prototype
real-time sandbagging sandbox simulation
solitaire symmetric theme trademark
transparency user interface VR Virtual Reality modeling
polygon count triangle quad real-time render
optimization silhouette bread crumb texturing
bump map normal map alpha map light map
decals shaders rigging skinning
one-off animations looping animations game engine game loop
gamestate player input waypoints scripting
2d graphics 2.5D graphics 3D graphics abandonware
MDA mechanics,
dynamics, aesthetics

AI Artificial
Intelligence

asynchronous
gameplay

AR augmented
reality

clipping developer emulator frame rate
game mechanics multiplier patch ping
platform procedural generation class actor
pawns characters brush worlds
bit mod lighting cameras
background instance static object animated object
condition event action event code compile
LOD models (level of
detail)

DevOps

Topics/Content Outline- Units and Themes:
Quarter 1:

● History of video and computer game development (1-2 weeks)
○ 2D and 3D games

● Game Development (5-8 weeks)
○ Narrative Construction
○ Game and Aesthetic Design
○ Programming

Quarter 2:
● Game Engines (3-5 weeks)
● Game Development Projects (6-8 weeks)
● The Gaming Industry (1-2 weeks)

○ Visual Art Roles
○ Programming Roles

Primary Resource(s):

Android Boot Camp 3rd Edition
Cengage Learning
©2016

Microsoft Visual Basic Windows
Web Store & Database Apps 1st Edition
Cengage Learning
©2018

